

"Exploration in the Earth's Neighborhood" Architecture Analysis

"A Work in Progress"
June 27, 2000

B. Kent Joosten
JSC/Exploration Office
281/483-4645
kent.joosten@jsc.nasa.gov

Agenda

- Lunar Architecture
- L₂ Evolution
- L₂ Stepping Stone

Lunar Architecture

Lunar Exploration Scenarios

- Lunar south polar region represents an excellent initial foothold for human exploration
 - Science potential is high
 - Potential access to resources
 - Environmental conditions probably most benign on lunar surface
 - Power storage problems significantly reduced or eliminated for extended stays
- Apollo-class sortie capabilities to anywhere on lunar nearside (or farside with comm relay)
 - Focused, high value objectives requiring reduced exploration resources (crew, time, surface infrastructure)

Human Lunar Architecture Concept

Architecture Assumptions

- Important considerations
 - Requirement for high-capacity launch capability deferred
 - "Safe haven" at L₁ and ISS
- Technology "freeze" in '05 assumes ISTP tech goals are met
- Initial LTV operations by '09
- No commitment regarding extensive lunar surface infrastructure
 - Transportation capabilities established allowing future expansion for science and commercialization

Domestic ELV Options

BOEING PROPRIETARY

Architecture Elements

- L₁ "Gateway"
- Lunar Transfer Vehicle (LTV)
 - Human transport from ISS to L₁ Depot and return
- High-Energy Injection Stage
 - Initial boost for LTV
- Lunar Excursion Vehicle (LEV)
 - Human transport from L₁ Depot to lunar surface and return
- Solar Electric Transfer Vehicles (SETV)
 - Delivery of L₁ Depot and LEVs to L₁

Lunar Transfer Vehicle

• "Requirements"

- Based at ISS for timing flexibility
- Launch and recovery in Space Shuttle
- Utilizes space storable propellants
- Crew of 4 with ∆V capability of >1700 m/s
- Operations in automated mode, or with crew onboard - automated rendezvous and proximity operations
- Aerocapture manuevers at lunar return speeds to ISS orbit

Preliminary Concept

- Lifting body for crew g reduction
- Integral LOX/CH₄ propulsion system
- Eighteen day independent mission capability
- Lightweight docking system

High Energy Injection Stage

- "Requirements"
 - Launch on EELV / Shuttle
 - Sufficient performance that when combined with fuelled Lunar Transfer Vehicle, missions to L₁ and return
 - Capability to achieve vicinity of ISS and maintain for > 30 days after launch
 - Rationale Lunar Transfer Vehicle and crew at ISS, represents two missed lunar injection opportunities
 - Ability to be structurally docked to Lunar Transfer Vehicle
- Preliminary Concepts
 - Derivative of Delta IV 5.1-m Configuration Stage
 - LOX/LH2, P&W RL10B-2
 - On-orbit life extension via small solar array (size TBD)
 - Propellant storage via cryo-cooler or propellant densification

Lunar L₁ "Gateway"

"Requirements"

- Docking capability for Lunar Transfer Vehicle and Lander and pressurized crew transfer
- Crew habitation for ≥12 days per lunar mission for return phasing or advanced system testing
- Vehicle support (power, att. control) for Lunar Transfer Vehicle and Lander
- Launch on EELV or Shuttle
- Habitat delivered via solar electric propulsion from LEO to L1

Preliminary Concept

- "Half-length" inflatable habitat
- Delivered to L₁ via Solar
 Electric Propulsion System
- SEP remains attached to provide power, attitude control

Lunar Excursion Vehicle

"Requirements"

- LEV will be designed for round-trip piloted missions from L₁ to lunar surface and back to L₁
- LEV will be delivered to L₁ by transfer stage
- LEV will be able to remain at L₁ for extended period to allow for delay in crew arrival
- LEV will interface with L₁ Depot
- LEV will allow easy lunar surface egress/ingress of suited crewmembers

Preliminary Concept

- LOX/CH₄ propulsion stages (ascent and descent)
- Seven day independent mission capability

Mission Concept

ISS Support - Why?

LTV Reusability

- Direct entry and landing would probably take one of two forms
 - "Apollo-style" most of vehicle discarded to achieve reasonable recovery system masses (drogues and parachutes)
 - "Lifting-body style" aerosurfaces, control surfaces, landing gear or drogue/parafoil/skids

Launch "Decoupling"

- Best efforts still imply two launches for L₁ mission STS for Lunar Transfer Vehicle and crew, EELV for high-energy injection stage
- First launch establishes orbital angular momentum, injection to L₁ must be nearly in-plane which occurs ~every ten days
- On-orbit wait without depleting STS Orbiter or Lunar Transfer Vehicle life-support, attitude control, and power
- "Space storable" propellant used for Lunar Transfer Vehicle
- Bottom line: with ISS, LTV and lunar crew are "stable" on-orbit, only one launch coupled to trans-lunar injection window (injection stage)

Reduce Vehicle Mass

- By eliminating supersonic, transonic, subsonic flight and landing, the following systems are eliminated (and do not need to be taken to L₁ and back):
 - Aerosurfaces, control surfaces, EMAs, landing gear
 - Drogues, parachutes, parafoils, airbags

Operations

 Landing site weather not an issue for LTV return (would have to be predicted four days in advance)

Issues with Utilizing ISS

- No "anytime return" from L₁ or L₂ discreet return windows
- Support for lunar/L₂ crewmembers at ISS while waiting for injection window (life support, crew return, etc.)
 - Additional capabilities or impact to ISS crew size?
 - Potential impacts to ISS science ops

Lunar Capabilities

Future Work

- Lander definition and operational scenario
- Gateway system definition and outfitting requirements
- Gateway logistics and resupply strategy

L₂ "Evolution" Architecture

Architecture Assumptions

- Similar approach taken as for lunar architecture
- L2 Gateway
 - Delivered to E-S L₂ via SEP, remains in L₂ vicinity
 - Provides extended life-support and EVA support for operations
 - Provides power, attitude control, etc. to Transfer Vehicle

L₂ Transfer Vehicle

- Volumetrics associated with 18-day 4-person lunar capability should suffice for trans-L2 and trans-earth mission phases
- Extended power storage and consumables to support maximum of 70-day contingency mission (unable to dock with Gateway)

L₂TV Transfer Vehicle

•"Requirements"

- -Based at ISS for timing flexibility
- -Launch and recovery in Space Shuttle
- -Utilizes space storable propellants
- -Crew of 4 with ∆V capability of >1700 m/s
- -Operations in automated mode, or with crew onboard automated rendezvous and proximity operations
- -Aerocapture manuevers to ISS orbit

Preliminary Concept

- -Lifting body for crew g reduction
- -Integral LOX/CH₄ propulsion system
- -65 day independent mission capability
- -Lightweight docking system

High Energy Injection Stage

- "Requirements"
 - Launch on EELV / Shuttle
 - Sufficient performance that when combined with fuelled L₂ Transfer Vehicle, missions to L₂ and return
 - Capability to achieve vicinity of ISS and maintain for > 30 days after launch
 - RationaleL Lunar Transfer Vehicle and crew at ISS, represents one missed L₂ injection opportunity
 - Ability to be structurally docked to L₂
 Transfer Vehicle
- Preliminary Concepts
 - Derivative of Delta IV 5.1-m Configuration Stage
 - LOX/LH2, P&W RL10B-2
 - On-orbit life extension via small solar array (size TBD)
 - Propellant storage via cryo-cooler or propellant densification

L₂ Gateway

Mission Concept

Sun-Earth Libration Point (L2) Mission Opportunities

Sun-Earth Libration Point (L2) Mission Opportunities

Earth Parking Orbit: Circular Altitude = 407 km, Inclination = 51.6°

Earth Departure Date

L2 "Evolution" Capabilities

L₂ "Stepping Stone" Architecture

L₂ Architecture Options

- Two architecture options being examined
- L₂ "Evolution"
 - L₂ science operations primary requirements and schedule driver
- L₂ "Stepping Stone"
 - Human Mars mission primary requirements driver
 - Approaches, technologies, schedule reflect emerging Mars exploration architecture
- Primary differences due to eventual Mars architecture:
 - L₂ Gateway and scale of L₂ capabilities (crew, duration) may be much more robust in "Stepping Stone" approach
 - Gateway becomes "Mars Transfer Vehicle" (MTV) hab
 - Extensive testing of MTV systems in interplanetary environment (L₂)

L2 "Stepping Stone" Capabilities

Issues

Crew Radiation Protection

- Solar proton events
 - Current strategy is to provide water-jacketed "storm shelter" (both in transfer vehicles and gateways)
 - Strategy may not work for lunar landers (mass penalties), however, two-day transit to gateway should be within SPE prediction capability
- Galactic cosmic radiation
 - Risk increases with mission duration
 - Risk increases with secondary particle production via interaction with surrounding material materials selection and vehicle geometry is key
 - Risk has to be assessed in context of crew exposure in various environments (EVA, spacecraft, gateways)
 - Research required for:
 - Biological effects (JSC) on Life Sciences critical Path Roadmap
 - Materials interaction (LaRC, JSC)
 - Environment definition (Codes S, U, M)

Future Work

- More detailed EVA system definition and operational scenarios
- Gateway system definition and outfitting requirements
- Gateway logistics and resupply strategy

Backup

The Role of Lunar Exploration

Development of Core Capabilities*

- Advanced Systems
- Advanced Technologies

Operational Experience

- Autonomous Deep Space Operations
- Planetary Surface Operations
- Mars Analog at Lunar Pole

Commercial Potential*

- Lunar Oxygen or Water Production
- Regolith Materials Processing

Science Return*

- Impact History in Near-Earth Space
- Composition of Lunar Mantle
- Past and Current Solar Activity
- Lunar Ice at Poles History of Volatiles in Solar System

*Draft, HEDS Strategic Plan

Earth-Moon L₁ Characteristics

Environment

 No orbital debris. Weak instability of L₁ will actively remove artificially created debris.

- Nearly continuous solar energy (>99.91%), no thermal cycling
- Nearly continuous full sky viewing (>99.96%)
- True deep space radiation, thermal environment, zero-g
- Continuous view of Lunar nearside, Earth, terrestrial magnetosphere
- No atmospheric drag

Operations

- Excellent transportation node for lunar surface, particularly polar regions
- Four days from Earth, two days from Moon (high thrust)
- Formation flying spacecraft mutually accessible with minimal delta-v, slow relative motion
- Potential staging point for deep-space exploration missions

Moon's Center (km)

57660

65348

764956

384400

384400

Earth's Center (km)

326740

449748

380556

384400

384400

L₁ Staging - Why?

Operational Considerations

- Lunar Orbit Rendezvous (LOR)
 - Access to lunar poles would require polar orbit if LOR mission mode utilized
 - Lunar polar orbit provides infrequent opportunities for trans-Earth injection (once every 14 days)
 - Orbit orientation inertially fixed, aligns with efficient trans-Earth trajectory twice a month
 - Access to ISS orbit would probably be impractical
 - Trans-Earth trajectory would also need to be synchronized with ISS orbit regression
 - Little control over Earth landing location without aerocapture and phasing
 - Total ΔV = 9461 m/s
- Libration Point Rendezvous
 - Continuous access from L₁ to lunar surface and return
 - Lunar rotation and libration point motion naturally synchronized
 - Continuous access to Earth landing point partially controllable
 - Access to ISS orbit every ten days
 - Total $\Delta V = 10746$ m/s
- Unique science opportunities may exist at L₁
- Deep-space human exploration analogs exist at L₁
- Support for deep-space human exploration missions at L₁ may advantageous

Mission Constraints

- Injection Windows from ISS to L₁
 - Combination of ISS Nodal Regression and Lunar Motion provides injection opportunity every ten days
- Injection Windows from L1 to Moon Continuously Open
 - Apollo-type landing lighting constraints eliminated if polar location chosen
 - L₁ Synchronized with Lunar Surface
- Symmetry in Return to ISS

Lunar Rate=	13.1764	deg/day
Orbit Regression Rate=	-4.984	deg/day
Alignment Interval=	9.912	days
Trip Time=	4.125	days
TL ! =	2.993	days prior to nodal alignment
TE⊫	1.132	days prior to nodal alignment
<u>Event</u>	M	<u> ET</u>
	<u>days</u>	DD:HH
TLI	0.000	00:00
Nodal Alignment	2.993	02:23
L1I	4.125	04:03
TEI	11.772	11:18
Nodal Alignmenet	12.904	12:21
EOI	15.897	15:21

Lunar Polar Characteristics

- Terrain in south polar sites may provide nearly continuous sunlight (>80%)
- Low sun elevation provides nearly constant surface temperatures (-50°C vs. -170° to +120°C at equator)
- Region proximate to large permanently shadowed areas (-230°C) and potential location of ice deposits
- Site is within largest impact basin known in solar system. Lower crust/upper mantle of Moon exposed here or nearby.
- Complete and continuous view of southern sky
- Terrain masking from terrestrial radio sources

Potential Lunar Polar Science Missions

- The Moon can be thought of as a 4.5 billion old impact detection instrument
 - Unique record of impact history in near-Earth space
 - Crater dating can address validity of terrestrial mass extinction theories
 - Current impact fluxes can be measured
 - Advanced telescope could accurately search for potential impactors
- Ice in lunar cold traps (if it exists) can provide history of volatiles in the solar system
- South Pole Aitken Basin is largest impact on Moon,
 - Can provide data on Earth-Moon cataclysms
 - Lower crust / upper mantle exposed
- Ancient galactic and solar particle fluxes can be determined from analysis of regolith

Composition and Nature of Lunar Mantle

Lunar Pole - Mars Analogs

Relevant Environmental and Operational Characteristics

- Low sun elevation provides nearly constant surface temperatures (-53° ± 10°C)
- Region proximate to large permanently shadowed areas (-230 °C) and potential location of ice deposits
- Line-of-site to Earth dependent upon terrain and lunar latitude libration

Human Mars Analog Objectives

- Testing of Mars surface equipment in lunar polar environment
 - Thermal, low-pressure, hypogravity, dusty conditions "similar" to Mars
 - May be relevant for EVA, habitation, lifesupport, mobility system testing
 - Science Operations
- Autonomous operations may be required when Earth out of line-of-site
- Lunar ice utilization technologies may be similar to those relating to Martian permafrost

